Package 'dataCompare'

Title: A 'shiny' App to Compare Two Data Frames
Description: A tool developed with the 'Golem' framework which provides an easier way to check cells differences between two data frames. The user provides two data frames for comparison, selects IDs variables identifying each row of input data, then clicks a button to perform the comparison. Several 'R' package functions are used to describe the data and perform the comparison in the server of the application. The main ones are comparedf() from 'arsenal' and skim() from 'skimr'. For more details see the description of comparedf() from the 'arsenal' package and that of skim() from the 'skimr' package.
Authors: Sergio Ewane Ebouele [aut, cre]
Maintainer: Sergio Ewane Ebouele <[email protected]>
License: MIT + file LICENSE
Version: 1.0.0
Built: 2024-10-29 02:27:16 UTC
Source: https://github.com/seewe/datacompare

Help Index


Function which perform the comparison of dataframe

Description

Function which perform the comparison of dataframe

Usage

compare_data_frame_object(df1, df2, id_var)

Arguments

df1

The first dataframe of the comparison

df2

The second dataframe of the comparison

id_var

Tve vector of id variable to identify the observations in df1 and df2

Value

An object of class "comparedf" as made by the 'comparedf' S3 method is returned.

Examples

library(dplyr)
compare_data_frame_object(
     iris %>% dplyr::mutate(ID = row_number()), 
     iris %>% dplyr::mutate(ID = row_number()), 
     'ID')

Datatable formatter, to print on the screen

Description

Datatable formatter, to print on the screen

Usage

data_table_formatter(df, n_page = 5)

Arguments

df

dataframe to format

n_page

number of rows to display per page

Value

An object of class "htmlwidget" containing a formated data.frame to print on app UI

Examples

data_table_formatter(iris, 10)

Add external Resources to the Application

Description

This function is internally used to add external resources inside the Shiny application.

Usage

golem_add_external_resources()

Value

No return value, called for side effects


mod_comp_desc_ui and mod_comp_desc_server

Description

A shiny module.

Usage

mod_comp_desc_ui(id)

Arguments

id

an id

Value

No return value


mod_comp_details_ui and mod_comp_details_server

Description

A shiny module.

Usage

mod_comp_details_ui(id)

Arguments

id

an id

Value

No return value


mod_intro_ui and mod_intro_server

Description

A shiny module.

Usage

mod_intro_ui(id)

Arguments

id

an id

Value

No return value


mod_load_data_ui and mod_load_data_server

Description

A shiny module.

Usage

mod_load_data_ui(id)

Arguments

id

an id

Value

No return value


read data loaded from an input file

Description

read data loaded from an input file

Usage

read_loaded_df(input_file_data, file_sep = ";")

Arguments

input_file_data

the link of the data to load

file_sep

the separator used to read the csv data. Possible values are : semi column";", comma"," or column":"

Value

An object of 'data.frame' class read from user input or a validation message


Run the dataCompare Shiny Application

Description

Run the dataCompare Shiny Application

Usage

run_data_compare_app(...)

Arguments

...

list of arguments

Value

No return value, launch the app


Detect common variables in two dataset

Description

Detect common variables in two dataset

Usage

same_variables(df1, df2)

Arguments

df1

the first dataset to use

df2

The second dataset to use

Value

a Character vector containing all variables names in both df1 and df2

Examples

same_variables(iris, iris)
same_variables(mtcars, mtcars)

Skim a dataset and return only characters variables characteristics

Description

Skim a dataset and return only characters variables characteristics

Usage

skim_char(the_data)

Arguments

the_data

Data on which the skim function will apply the description on character variables

Value

a data.frame object containing description of all character (factor, character or date) variable in the input data.

Examples

skim_char(iris)
skim_char(mtcars)

Skim a dataset and return only numeric variables characteristics

Description

Skim a dataset and return only numeric variables characteristics

Usage

skim_num(the_data)

Arguments

the_data

Data on which the skim function will apply the description on numeric variables

Value

a data.frame object containing description of all numeric (doucle or integer) variable in the input data.

Examples

skim_num(iris)
skim_num(mtcars)